
MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 169
JANUARY 1985, PAGES 151-165

A Rapid Robust Rootfinder

By Richard I. Shrager

Abstract. A numerical algorithm is presented for solving one nonlinear equation in one real
variable. Given FX with brackets A and B, i.e., sign(FA) = - sign(FB) $ 0, the algorithm finds
a zero of F, A < X < B. Alternately, a crossover pair is found, i.e., (X, Y): sign(Fx) =
- sign(Fy) $ 0 where there is no floating-point number in the system between X and Y. This
feature allows full use of machine precision. Optionally, a tolerance TOL > 0 may be given,
to permit termination when IY - XI < TOL. The method, once rapid convergence sets in, is
alternation of one linear interpolation or extrapolation with one inverse quadratic interpola-
tion. The resulting asymptotic convergence rate is competitive with other methods that refine
both brackets and do not require dF/dX. Other merits of the algorithm are: robust
calculation, efficient three-point interpolation, and superior behavior in bad cases. The
algorithm is tested and compared with others.

1. The Problem, and an Outline of the Paper. Given a real-valued function F of
one real variable X, with brackets A and B such that sign(FA) = - sign(FB) # 0,

(1) find X such that FX = 0 (we call such X a machine zero of F), or
(2) find X and Y such that sign(Fx) = - sign(Fy) # 0 and either

(a) I X - YI < TOL, where TOL is a user-supplied tolerance, or
(b) X and Y have no representable number between them (we call such X and

Y a crossover pair).
The rootfinder has no access to derivatives of F. It is to be superlinearly

convergent for smooth F with simple roots, and reasonably efficient even in the
worst of cases. The root is to be found by successively refining the bracket [A, B]
until one of the termination criteria (1, 2a, or 2b, above) is met.

The contents of the paper are as follows:
Section 2: Background. Some current algorithms of Bus, Dekker, and Brent are

discussed.
Section 3: Structure and correctness. The general flow of Algorithm S is used to

show that it must terminate.
Section 4: Robust calculation. Overflow never occurs and underflow is safeguarded,

permitting X and F to span the range of the machine.
Section 5: Machine issues. Floating-point numbers can be specified precisely with

standard, civilized computer expressions.
Section 6: Good cases. The various strategy sequences during rapid convergence

are described.

Received February 8, 1982; revised May 16, 1983 and February 3, 1984.
1980 Mathematics Subject Classification. Primary 65H05, 65-04, 65D05, 65G05, 68E05.

151

152 RICHARD I. SHRAGER

Section 7: Efficient interpolation. A specialized but inexpensive 3-point interpola-
tion is presented.

Section 8: Bad cases. Modified bisection avoids the worst costs of interval
bisection. More frequent bisection is encouraged in high cost problems. Multiple of
the linear interpolation step is a buffer strategy between bisection and the other
strategies.

Section 9: Algorithm S is compared to others.
Appendix A: Machine-dependent constants and procedures.
Appendix B: Procedures called by Algorithm S.
Appendix C: Algorithm S.

2. Background. Before 1969, most rootfinders found in computer libraries fell into
one of two categories: "slow but sure," or "fast but risky." A slow but sure method
is interval bisection (IB), where X is generated from the current bracket [A, B] by
X <- (A + B)/2. In the undesirable "slow and somewhat risky" category is linear
interpolation (LI), in which X is generated, e.g., by R <- FA/(FA- FB), then
X <- (1 - R) * A + R * B. X usually lies strictly between A and B, but in most
problems, one bracket is refined while the other remains far from the root. This leads
to the double disadvantage of linear convergence with no guarantee of the root's
location (especially when no machine zero is found). The LI strategy is upgraded to
"slow but sure" by alternating it with IB. The most common "fast but risky"
method is the secant method, which achieves an order of convergence of 1.618
because it always uses the last two iterates to generate X by linear extrapolation
(LE). Here again, without a machine zero, convergence is not guaranteed for general
F. In addition, it is possible for the method to oscillate or diverge. However, the
order of convergence is an industry standard.

In 1969, Dekker [3] published an algorithm employing all three strategies (LI, LE,
and IB) to the effect that both brackets converge with order 1.618. For most
problems with simple roots, the order of strategies is (LI, LI, LE) repeated. IB is
reserved for cases where the linear strategies do not work well. In 1973, Brent
showed an example [1, p. 49] where Dekker's algorithm can be induced to make very
small refinements in the bracket for many iterations, because there is no built-in
requirement that IB will ever be used. Brent presented an algorithm [1, p. 58] with
two refinements. First, IB is used with a frequency that guarantees the equivalent of
an IB step every two steps. Therefore, Brent's algorithm should never be much
slower than IB. Second, Brent introduced inverse quadratic interpolation (QI), which
is used about every third step during rapid convergence, resulting in noticeable
improvement in performance [1, Table 4.2], [3, Table 1] for simple roots in
unexceptional neighborhoods. In 1975, Bus and Dekker [2] published two algo-
rithms. The first is similar to Dekker's algorithm with a counter to insure that
bisection is achieved at least once in every four steps. The second algorithm strives
for frequent use of rational interpolation, achieving a convergence order of 1.839 in
the best cases with insured bisection every five steps. In addition, Bus and Dekker
disputed Brent's claim that the cost of Brent's algorithm is, at worst, twice the cost
of IB, but they gave no examples.

A RAPID ROBUST ROOTFINDER 153

At this point, we will adopt the Bus and Dekker names for the various algorithms
to avoid confusion, adding our own to the list:

Algorithm Reference Strategies

A Dekker [3] LI, LE, IB
B Brent [1] LI, LE, QI, IB
M Bus & Dekker [2] LI, LE, R3, IB
R Bus & Dekker [2] LI, LE, R3, IB
S Shrager LI, LE, QI, ML, MB

The various strategies are

LI: linear interpolation using the current brackets.
LE: linear extrapolation, constrained between the brackets.
QI: inverse quadratic interpolation, similarly constrained.
R3: 3-point rational interpolation.
IB: interval bisection.
MB: modified bisection, explained in Section 8.
ML: multiple LI step, explained in Section 8.

3. Algorithm S: Structure and Correctness. The variable S (for Strategy) in
Algorithm S, indicates which of 5 strategies has been selected in each iteration.
Based on S, X is generated by one of 5 methods selected in the first CASE statement
in Appendix C. Regardless of the strategy used, X is eventually generated by one of
two statements:

X -COMBIN(A,B,R), whereO<R <.5, or
X <- COMBIN(FPNMED(A, B), COMBIN(A, B, .5), Q).

The values produced by the expressions COMBIN(A, B, R) and FPNMED(A, B)
are required to lie strictly between A and B if possible, and to equal A otherwise.
Therefore X generated either way will satisfy this requirement. X = A produces the
crossover termination. The general structure of the iterative loop is shown in
flow-chart form in Figure 1. The 5-way branch mentioned above occurs in Box 1.
Box 2 contains two more 5-way branches, one for SIGN(FX) = SIGN(FB) called
"success" (the second CASE statement in Appendix C), and another for SIGN(FX)
= SIGN(FA). These ten branches are simply individual decisions about the next
value of S, with an occasional auxiliary calculation. Regardless of which branch is
taken, one of the brackets has been replaced by X by the end of the iteration.

Since the bracket is refined in every iteration, and the floating-point numbers are
a finite set, then even with TOL = 0 and no machine zero of F, a termination will be
reached (i.e., a crossover) in a finite number of iteraXbns, though possibly in as
many iterations as there are numbers in the initial [A, B]. Brent showed that
Algorithm A could be induced to approach this limit. We show in Section 8 that
Algorithm S cannot be so induced, and in fact, that it has by far the mildest worst
case of any current algorithm.

While Algorithm S is correct with respect to termination, and it can refine a
bracket to machine precision when required, it cannot guarantee the accuracy of the

154 RICHARD I. SHRAGER

root in some seemingly simple problems, nor can any of the rootfinders. For
example, consider FX = GX - 1.5, with a root X* = 1.5, where GX is smooth and
computed correct to the last bit. For 0 << dG/dX < 1, the number of machine zeros
increases as 2/(dG/dX) from subtractive roundoff. When roundoff or underflow
produce many machine zeros where there should be only one root, Algorithm S will
stop with the first encountered zero. For some F, it may be possible to determine the
proper sign for any X even though the magnitudes are too small to resolve, in which
case a very small number with the proper sign may "stand in" for the true F,
avoiding the large interval of machine zeros. An analogous method can allow
Algorithm S to proceed when true F would be too large to compute.

Begin with A,B such that

IFA|1<=|FBI and

SIGN (F A)=-SIGN(FB) iO

IB-A I<TOL? Y' P-I
RETURN(A) Tolerance Met.

NO

BOX 1:

Compute X by strategy S such that

X is strictly between A & B when

such exists and X=A otherwise.

X=A? YES RETURN(A) Crossover.

NO (At this point, either A<X<B or B<X<A holds.)

F -0? YES RETURN(X) Machine Zero.

NO

BOX 2: ,

Choose Next Strategy S Based on:

1. SIGN(FX)= SIGN(FB)? Success?

2. Current Strategy

3. IFg|<|FPA ? Decreasing |F|?

Replace A,FA or B,FB by X,Fx Bracket always contracts here.

If IFB P< FA|, exchange brackets. Insure IFA|<=IFBi-

FIGURE 1

Generalflow chart of Algorithm S, indicating features that

guarantee correctness.

A RIAPID ROBUST ROOTFINDER 155

4. Robust Calculation. There are two basic rules observed in Algorithm S: overflow
and division by zero shall never occur, and underflow is safeguarded. Underflow is
presumed to yield zero without stopping the program. Certainly, it is more efficient
to let some exceptions occur, and trap them with machine interrupts, rather than test
in advance or scale to avoid the exceptions every time through the calculations. But
for this application, the "strict avoidance" policy is not very expensive; we avoid
confronting the confusing array of interrupt handling conventions in current sys-
tems; and Algorithm S runs successfully on systems that simply "stop dead" when
such exceptions occur. Dekker [4] points out that correctness (eventual termination)
is not precluded by overflow as long as the calculation proceeds with some large
magnitude having the proper sign. Even this device has its price, because the
overflow usually interferes with an accurate determination of X, which in turn
interferes with convergence rate.

If an underflowed quantity is likely to become a significant part of subsequent
calculations, the calculation is redone with scaled values, so that underflow cannot
occur or at least that underflow the second time is guaranteed insignificant. Such
underflow is "detected" by a suspicious zero result, or by an incremented quantity
that fails to change, e.g., X in the procedure COMBIN in Appendix B.

Here are four arithmetic difficulties encountered in Algorithms B, M, and R which
are avoided by the methods of Sections 4 and 5:

1. Algorithms M and R routinely produce intermediate quantities with more
extreme magnitudes than the inputs. Even when all X and F are well within machine
range, an overflow or underflow will interfere with the accurate calculation of X. The
following are two examples on the IBM-370 with magnitudes 10- 7 to 107.
Algorithms M and R will overflow on FX = X3 with A =- 1013 and B = 2 * 1013.
They will also underflow persistently on Fx = X - 10-40 with A = 5 * 104- and
B = 2 * 10 - 4. On this last example, perceptible progress is made only by IB, every
fourth or fifth step.

2. Algorithms B, M, and R cannot consistently resolve a root to machine
precision. Their achievable bounds for various forms of computer arithmetic are
listed in Theorem 1 of [4]. Machine-precision techniques are discussed in Section 5.

3. Some functions, particularly those with horizontal or linear asymptotes at each
end, may have no a priori bound on the root. A simple ploy for the user is to set -A
and B to huge numbers, close to machine limits. For such problems, Algorithms B,
M, and R will overflow on the operation B - A. Similarly, if A and B are near poles
of F, an overflow may occur on FA- FB.

4. Some functions have small roots whose trailing digits are below the hard
underflow level of the machine. Unless the machine permits soft underflow [8], it
will be impossible for Algorithms B, M, and R to refine the brackets near the
root, because small, significant increments will underflow. The IB formula
X <- (A + B)/2 will not underflow in this situation, but it is unsafe on other than
binary machines [5, p. 162].

The following are techniques for preventing harmful exceptions (refer to Appen-
dix A for definitions):

1. If the magnitudes of A and B are huge, then A + B may overflow if SIGN(A)
= SIGN(B), and A - B may overflow otherwise. Such operations are few in

156 RICHARD I. SHRAGER

Algorithm S, so they may be checked in advance for safety. For example, the test
ABS(B - A) < TOL also takes two other forms: A < TOL + B and B < TOL + A
depending on the signs of A and B. (Comparisons are assumed exact for all FPNs.)
For another example, X may be generated either by X <- (1 - R) * A + R * B or by
X <- A + R * (B - A). This last formula is used whenever SIGN(A) = SIGN(B)
because it also avoids the anomaly mentioned in [5, p. 162].

2. The calculation of R involves ratios with known bounds, provided the arith-
metic is at least weak by the definition of Dekker [4], with some properties worth
mentioning:

Property A: If A < B, then A/B < 1.
Property B (soft): FPEMAX > FPPREC.

FPEMAX and FPPREC are defined in Appendix A. Property B (soft) insures that
the ratio 1/(1 - U) does not overflow for U < 1. The computation of R in the LE
strategy involves the product of ratios:

R*- [1/(1 - U)] [(A - C)/(B-A)].

The relation U < 1 must hold, so Property B (soft) insures the safety of the first
ratio. Neglecting roundoff, the relation IA - Cl < B - Al must hold, because the
current values (C, A, B) are the previous values (A, X, B), and X is at most half
way from A to B. For the following examples of roundoff, recall that the current A
and B have at least one FPN between them, otherwise a crossover-pair exit would
have occurred. Roundoff is of three types, shown below in their extreme form, where
tO tl, t2,... are consecutive increaing FPNs:

(a) Let C = to, B = t5, and let A be rounded to t3, instead of t2, where the t's are
equally spaced:

(A - C)(B-A) = 1.5.

(b) Let B = to, A = t2, C = t2, C = t3, where A is a normalized integer power of
the machine base (not the smallest):

(A - C)/(B - A) = (1/2) * FPBASE.

(c) Let 0 = C = tog A = t1, B = t3 on a hard underflow machine:

(A - C)/(B - A) = (1/2) * FPBASEFPPREC - 1.

On soft underflow machines, the FPNs are equally spaced around zero, so case (c)
does not occur. Based on the above observations, Property B (soft) is sufficient for
soft underflow machines, but for hard underflow, we need:

Property B (hard): FPEMAX > = 2 * FPPREC.
3. The statement X -- A + R * (B - A) could yield X = A even though the exact

quantity R * (B - A) is a significant fraction of A. That is, R * (B - A) underflows.
On machines with soft underflow (see [8] for definitions of underflow), this never
happens, because underflow implies a result less than any significant part of any
representable number. On machines with hard underflow, the condition is correcta-
ble by scaling A and B by a large factor so that the least digit of LARGE * A is well
above the underflow level, i.e.,

X (LARGE* A + R * (LARGE*B B-LARGE*A))/LARGE.

A RAPID ROBUST ROOTFINDER 157

The variable LARGE is an integer power of the machine base to avoid roundoff
effects:

Property C: FPF(A) = FPF(LARGE* A) where FPF is a function defined in
Appendix A.

The above calculation of X can produce X = A only when the increment to A is
insignificant, whereupon X is replaced by the number nearest to A in the proper
direction, as described in the next section.

5. Machine Issues. The procedures COMBIN and FPNMED specified in Appen-
dix B, are required to return a result strictly between A and B, if possible, and to
return A otherwise. Consequently, these procedures must detect when A and B are
neighbors in the number system. The procedure NEIBOR, specified in Appendix A,
provides such capability, since it returns the number closest to A toward B.
(NEIBOR is a realization of a procedure called NEXTAFTER, suggested in [8].)
Iterates X of the form X = NEIBOR(A, B) are frequently required in the final
stages of refining the bracket, and the relation B = NEIBOR(A, B) is proof that the
machine limit of refinement has been reached.

The procedures COMBIN, FPNMED, and NEIBOR are written in terms of
primitive procedures FPE, FPF, and FPN. These last three, in the author's view,
should be provided for any floating-point system, as they enable many machine-de-
pendent operations to be performed with a minimum of machine-dependent infor-
mation. See Appendix A for definitions of these procedures and some associated
machine-dependent constants. Their use is amply illustrated in Appendices B and C.

Machine dependence of a code should not be worrisome, as long as the machine-
dependent parts are clearly indicated and easily adaptable to other machines. In the
codes of COMBIN, FPNMED, NEIBOR, and ROOT (Algorithm S), comments that
begin COMMENT MACHINE explain the machine-dependent requirements. The
procedures FPE, FPF, and FPN will have to be rewritten for each base, precision,
and range, but they are simple, and they allow much of the code of their client
procedures to remain intact. For example, in NEIBOR, COMBIN, and FPNMED,
as long as one is dealing with hard underflow systems, only the constants need be
changed. Conversion from hard to soft underflow will require more effort, because
the definition of a permissible floating-point number has changed. However, Algo-
rithm S is left unchanged regardless of the change of arithmetic, provided that the
properties mentioned in Section 4 are preserved.

As a final word on the civility of code, a floating-point number has 3 parts: sign,
fraction, and exponent. It will profit us in the long run to establish expressions that
treat those parts separately, just as we have already done with character strings in
the newer FORTRANs.

6. Good Cases. At the start of any iteration, A and B bracket the root(s) with
IFA I < IFBI. Until termination, X always lies strictly between A and B. The subgoal of
Algorithm S is to refine the "worst" bracket B at each step. In this context, we
regard SIGN(FX) = SIGN(FB) as "success" and SIGN(FX)= SIGN(FA) as
"failure". X is never more than half way from A to B (neglecting roundoff),
therefore any success is at least as good as an IB step.

158 RICHARD I. SHRAGER

In this paragraph, assume that F is nearly linear in [A, B], and therefore the LI,
QI, and LE strategies will produce lFXl < IFAI at every iteration. Algorithm S starts
with LI. Either X replaces B and the brackets exchange (success), or X replaces A
(failure). Either way, QI follows using 3 points (see Section 7 for the exact formula):
X from LI has become A, the bracket replaced by X has become C, and the
remaining bracket is B. The QI step may either fail or succeed depending on the
higher derivatives of F. (See Ostrowski [7] on remainder formulas.) If it succeeds, LI
repeats with the latest two points. Otherwise LE is invoked with the latest two
points. A geometrical note: if LI fails in a bracket with no zeros of d2F/dX2, and QI
fails with IFxj < 11/31FA, the use and the success of LE are guaranteed (the LE
iterate is not used if it lies in the B half of the bracket). Therefore LE will succeed
when used, in most smooth problems, and QI will once again be invoked with the
latest 3 points. As long as EFxt < IFAI, and one of the strategies QI or LE succeeds,
the result is alternation of 2-point and 3-point interpolation, always using the latest
available points. A summary of such sequences may be given as a graph, in which
the upper paths denote success, and the lower paths denote failure:

L . - IIL

to other strategies

Brent [1, p. 54] deduces a weak order of convergence of at least 1.618 for
Algorithm B. The same reasoning applies to Algorithm S, which uses the same
interpolation formulas in slightly different order. Where Algorithm B tends to use
QI every third step, Algorithm S uses it every other step. In cases where QI confers
an advantage over LI in convergence rate (e.g., for smooth F and away from zeros in
low-order derivatives of F or its inverse X(F)), the more frequent use of QI confers
a greater advantage.

7. Efficient Inverse Quadratic Interpolation. A useful fact will be stated without
proof. Consider two starting points B and C with IFBI < tFcE. The variable A is

computed by linear interpolation or extrapolation which, in either case, can be
expressed as:

R -FB/(FB-- FC); A- B + R(C-B).

Assume, as required in the algorithm, that sign(FA) = - sign(FB) and IFAI < IFBI.
Then the root X of the inverse quadratic through these three points is computed by:

U -FA/FC; R- [FA/(FA-FB)I/(1-U); X- A ? R(B-A).

In other words, where a linear interpolation is done in 5 arithmetic operations, the

subsequent inverse quadratic interpolation requires 8. This economy is available only
when A has been linearly interpolated from B and C. For this reason, a QI step in
the proposed algorithm is always immediately preceded by an LI or LB step.

A RAPID ROBUST ROOTFINDER 159

Efficiency of interpolation is not a negligible issue. Some programs use root-find-
ing to invert easily-computed functions many thousands of times. In such cases,
added overhead can negate fewer F-evaluations. Brent's QI formula is fairly robust
(in terms of avoiding arithmetic exceptions) but inefficient (about 20 operations).
Inversely, the Bus and Dekker rational formula is efficient (10 operations) but
unsafe. The proposed QI formula, with conditions and precautions explained in
Section 4, is both robust and efficient.

8. Bad Cases. This section considers three methods of improving efficiency in
problems where the rapidly-converging strategies often fail: avoiding the worst costs
of IB, increasing the frequency of bisection, and inserting a buffer strategy between
bisection and the others.

First we consider problems for which IB does not work well, namely for roots of
small magnitude in an initial bracket containing many magnitudes (e.g., binades). As
a model bracket we use [0, 1] on a binary machine with p bits of precision, with 2 -L

as the smallest positive normalized number, and with no unnormalized numbers.
(Using other large brackets or other arithmetic rules will not affect the conclusions
drawn here.) The function F is assumed to have no machine zero in [0, 1]. Cost is the
number of F-evaluations required to find a crossover pair. Average cost refers to a
population of problems in which the distribution of roots is uniform in [0,1]. We will
also be concerned with worst costs of various bisection schemes. These cannot be
ignored as curiosities, because a high worst cost indicates the presence of many other
high cost roots. Our goal is to reduce all of IB's higher costs.

The average cost of IB is p + 1. That is, for 1/2 < X* < 1 where X*, is the root,
each bisection determines one bit of precision. For 2-L < 2-(n+1) < X* < 2-n, n
additional bisections are required to achieve the smaller crossover tolerance, but the
interval [2 -(n + 1), 2 -n] is also smaller and less likely to contain a root. Still, the worst
cost of IB is p + L, ranging from hundreds to thousands of F-evaluations on the
computers listed in [5, Chapter 2]. This is in addition to the often fruitless iterations
spent by the various algorithms on strategies other than bisection. As illustrated in
groups 7-11 of the test results, both smooth and nonsmooth problems, in intervals
of many sizes, can be subject to some of this cost.

A second search technique, which we call table bisection (TB), regards an interval
[A, B] as a vector T containing all the floating-point numbers in the interval. I.e.,
A = TO, B = Tj, and the next iterate will be the median value TJ12 A procedure,
(FPNMED) for producing this number given any A and B is presented in Appendix
B.

The average and worst cost of TB are the same: p + log2 L samples per run.
While this is much better than the worst cost of IB, it exceeds the average cost of IB
by a considerable amount. TB should be used only when IB runs into trouble. This is
accomplished by a blend of the two methods called modified bisection (MB).
Algorithm S has a weight variable q, initialized at .5 and squared after each use. As
long as A and B differ in either sign or magnitude, the MB formula

X= T+ Q*(M- T)

is used, where M = (A + B)/2 and T is the median floating-point value in (A, B).
When A and B are within some factor (2 in the program) the interval bisection
formula X = A + .5* (B - A) iS used. For example, if the root is very near zero, the

160 RICHARD I. SHRAGER

first few values of Q will be 2 1, 2-2, 2-4, 2-8, and very quickly, the vast majority
of weight is given to table bisection. The average cost of MB exceeds the average
cost of IB by only 0.66 samples per run (a computed average of trials over all
binades on a DEC-10 computer), while the worst cost, about p + 2 * log2 L, is only
moderately worse than TB in relative terms.

From Table 3 in [2], it is observed that when the rapidly convergent strategies are
not working well, all reported methods behave poorly. These results would have been
much worse for a small relative tolerance (the root was zero). One problem, already
mentioned, is the choice of bisection strategy. But also important is the fraction of
bisection steps overall, which can be quite low for methods described in [2].

This, then, is our second method of improving bad cases: having evolved a
reasonably efficient bisection strategy, we must also insure that bisection steps will
be taken frequently when they are needed. Accordingly, a counter (MB) in the
program records the number of bisection episodes, i.e., the number of times the
strategy variable S is changed to 5 from some lesser value. The algorithm, upon
selecting S = 5, will take at least MB consecutive bisection steps before selecting
another strategy. As a result, bisection will occasionally be used when faster methods
would work, but the cost will always be moderate relative to total cost. Also, if some
maximum permissible number of consecutive nonbisection steps NB (initially 12 in
Algorithm S) has been taken, then 4 or more consecutive bisection steps are taken,
NB is lowered by one (with a lower limit of 4 to permit superlinear strategies to
work if they can), and MB is raised by one with no explicit maximum. Thus the
asymptotic bad case behavior of Algorithm S is that of bisection, which is selected
an increasing fraction of the time.

For our third method of improving bad cases, we consider what to do after
bisection. Bisection was invoked because the other methods failed. Rather than
resume a recently ineffective plan, there is a simple test for how well things are likely
to go. The hope is that LI is a good strategy. If so, moving a multiple of the LI step
from A toward B will succeed; this is the ML strategy. (See Section 6 on success and
failure.) In Algorithm S, the initial multiple is 8, it is doubled at each failure of ML
and restored to 8 at any success of ML. Whenever ML fails, it accomplishes two
goals: first, it eliminates a larger portion of the bracket than LI would have, and
second, it warns us that F was not nearly linear. Therefore, more bisection is
probably a good idea. On the other hand, if ML succeeds, the repeated sequence
ML-LI is asymptotically superlinearly convergent where the repeated sequence IB-LI
is not. It is mainly for these reasons that Algorithm S tests better with ML than
without it. ML is also used instead of QI or LE when IFxl < IFAI fails to hold.

9. Test Results. Test problems from [2] were among those used to compare
Algorithms B, M, R, and S. All problems for all methods were run on an IBM-370
computer in double precision (14 base-16 digits with magnitudes 16 64 to 1664). The
results are presented in Table I. The results are grouped as in [2] (individual results
are largely uninteresting), and table entries are average F-evaluations per problem.
In addition, two other groups of well-behaved problems are included. Group 5 uses

FX = X-
- C' for all combinations of:

C = (.01, .02, .05, .1, .2, .5, 1, 2, 5), and

P = (-6, -3, - 1.5, - .75, .75, 1.5, 3, 6)

A RAPID ROBUST ROOTFINDER 161

with first guesses near the root X.:
(A = .5X*, B = 2X*), (A = .5X*, B = 1.25X*),

(A = .5 X*, B = 1.01 X*), (A = .99X*, B = 2 X*)

288 problems in all. Group 6 uses Fx = X'- C with the same combinations of
inputs as Group 5. However, Group 5 problems all have exact answers X* = C,
whereas Group 6 counts only those problems with no exact zero, 184 problems out
of 288. In Groups 5 and 6, TOL = 0 was used.

Table I shows, essentially, that Algorithm S does well, though not best, in
well-behaved problems (Groups 1, 2, 5, 6) and is, for the most part, superior to the
other methods when things go wrong (Groups 3, 4). This last point was illustrated
further by several additional groups of problems with TOL = 0:

Group 7. Fx= (X-/C)3,A = -1,B= 3.

8.Fx= (X- 1)/(1 +(X- 1)2),A = O,B = C.
9. Fx = LOG(X), A = 1/C, B = C.

10. Fx =EXP(-X2)-.01, A = 0, B = C.
11. Fx = IF X > .7THEN 1 ELSE -1, A = O, B = C.

In groups 7 through 11, the parameter C was increased exponentially:

C= 2', i= 1,2,3,....
Rather than present many tables, we feel that the following observations summarize
the results:

1. For small C (< 256 usually), cost of the four algorithms was essentially the
same except in groups 7 and 11 as remarked below.

2. In Group 7, the costs of Algorithms B, M, and R were at least 1.7 times the cost
of Algorithm S in all cases, because multiple roots require bisection which was used
a greater fraction of the time in Algorithm S.

3. The costs of Algorithms B and M increased as Log2 C in all groups, while the
cost of Algorithm S leveled off for large C. Theoretically, the costs of Algorithm S
should increase as 2 * Log2(Log2 C) for large C.

4. The cost of Algorithm R increased as Log2 C in Groups 8 and 9, but as
5* Log2 C in Groups 10 and 11. In these last two groups, Algorithm R used
bisection only about one in every five steps. Throughout Group 11, Algorithm R was
at least 3 times as expensive as the other algorithms.

Problems illustrating robustness of arithmetic were not included in this section.
For a discussion of those, see Section 4.

TABLE I

Test results in F-evaluations-per-run

Problem Algorithm

Group B M R S

1* 9.12 9.82 9.00 9.35
2* 18.6 16.2 13.4 16.7
3* 94. 114. 126. 15.
4* 18. 18. 22. 7.
5. 8.79 9.13 7.74 8.56
6 11.67 11.90 10.47 11.75
7-11 . . * * * * see text .
*from Bus and Dekker [2].

162 RICHARD I. SHRAGER

COMMENT Appendix A:
Machine-dependent procedures and constants are defined here.
The acronyms FPN, FPE, and FPF mean a floating-point number
x, its exponent e. and its signed fraction f, such that:

x=f*(base^e). base = machine base, and 1/base<=f<1.
x=0 yields e=fpemin defined below, and x=0 1ff f=O;

INTEGER PROCEDURE fpe(REAL x); COMMENT Return the FPE of x;
RETURN (IF x=0. THEN -128 ELSE

(('377000000000 LAND abs(x)) LSH -27)-'000000000200);
REAL PROCEDURE fpf(REAL x); COMMENT Return the FPF of x;

RETURN (IF x=O. THEN 0. ELSE (IF x<0. THEN -1. ELSE 1.)*
((abs(x) LAND '400777777777) LOR '200000000000));

REAL PROCEDURE fpn(INTEGER e; REAL f);
COMMENT Return FPN with FPE e and FPF f. If f=0, return 0;
RETURN (IF f=0. THEN 0. ELSE (IF f<0. THEN -1. ELSE 1.)*

((abs(f) LAND '400777777777) LOR ((e+128) LSH 27)));

INTEGER fpprec.fpemin.fpemax; REAL fpbase.fpbsml1fpbsp1.
fpfmin.fpfeps.fpfmax, fpnmin,fpnmax. huge,small,large;

COMMENT MACHINE dependent constants. These should be stored as
permanent data or generated once at the start of execution.

fpprec_ 27, no. of base-digits of precision.
fpemin_-128, minimum FPE.
fpemax_ 127, maximum FPE.
fpbase_ 2., floating-point base.
fpbsm1_(fpbase-1)/(2*fpbase), used by fpnmed in appendix B.
fpbspl_(fpbase+1)/(2*fpbase), used by fpnmed in appendix B.
fpfmin_1/fpbase, minimum FPF > 0.
fpfeps_fpn(1-fpprec,fpfmin), minimal FPF increment, i.e. one

in the last digit of any FPF.
fpfmax_1.-fpfeps. maximum FPF.
fpnmin_fpn(fpemin,fpfmin). minimum FPN > 0.
fpnmax_fpn(fpemax.fpfmax), maximum FPN.
small _fpn(fpemin+fpprec+3,fpfmin), any very small FPN, but

large enough that the smallest significant increment
to it is an FPN. Used only on hard underflow machines.

large _fpn(fpprec+3Pfpfmin)P fpbase raised to an integer
power such that large*fpnmin >= small.
Used only on hard underflow machines;

REAL PROCEDURE neibor(REAL a.b); BEGIN "neibor"
COMMENT Return FPN closest to a toward b. Return a iff a=b;
INTEGER ea,sa.sb; REAL aa,ab,fa;
COMMENT MACHINE: neibor also requires fpfmin.fpfeps.fpfmax.

fpnmin,fpe,fpf, and fpn defined above;
aa_abs(a); sa_sign(a); ea_fpe(a); fa_fpf(aa);
ab_abs(b); sb_sign(b); RETURN

IF sa=sb AND ab>aa THEN
IF fa<fpfmax THEN sa*fpn(ea,fa+fpfeps)
ELSE sa*fpn(ea+1.fpfmin)

ELSE IF a=b THEN a
ELSE IF fa>fpfmin THEN sa*fpn(ea.fa-fpfeps)

ELSE IF fa=fpfmin THEN
IF aa=fpnmin THEN 0.
ELSE sa*fpn(ea-1.fpfmax)

ELSE sb*fpnmin) END "neibor";

A RAPID <R OBIJST ROOTFINDER 163

COMMENT Appendix B
Procedures called directly by Algorithm S are given here;

REAL PROCEDURE combin(REAL a,b,r); BEGIN "combin"
COMMENT Return x=(1-r)*a+r*b where a and b are arbitrary and

O<=r<=.5. x must be strictly between a and b if possible.
Return x=a iff a=b or b=neibor(a,b);

REAL x; COMMENT MACHINE: combin also requires large, small,
and neibor from appendix A;

x_IF (a GEQ O.)=(b GEQ 0.) THEN a+r*(b-a) ELSE (1-r)*a+r*b;
COMMENT MACHINE: for soft underflow, the following test and

BEGIN-block should condense to: IF x=a THEN x_neibor(a,b);
IF x=a THEN BEGIN

IF abs(a)<small AND abs(b)<1 THEN
x_(large*a+r*(large*b-large*a))/large;

IF x=a THEN x_neibor(a,b) END;
RETURN(IF x=b THEN neibor(b,a) ELSE x) END "combin";

REAL PROCEDURE fpnmed(REAL ain,bin); BEGIN "fpnmed"
COMMENT Return the median FPN between ain and bin. I.e. vector

t=all FPNs in [ain,bin1, ain=t(O), bin=t(n). Return t(n/2).
Return ain iff ain=bin or bin=neibor(ain,bin);

INTEGER ea,eb,edist,ex,sa,sb; REAL a,b,fa,fb,fx;
COMMENT MACHINE: fpnmed also needs fpemin,fpbsm1,fpbsp1,fpfmin,

fpfeps,fpnmin,fpe,fpf,fpn, and neibor from appendix A;
IF abs(ain)>abs(bin) THEN BEGIN b_ain; a_bin END
ELSE IF abs(ain)<abs(bin) THEN BEGIN a_ain; b_bin END

ELSE RETURN(IF ain=bin THEN ain ELSE 0.);
sb_sign(b);
IF a=0. THEN BEGIN sa_sb; ea_fpemin; fa_fpfmin;

IF abs(bin)>fpnmin THEN b_neibor(b,a) END
ELSE BEGIN sa_sign(a); ea_fpe(a); fa_abs(fpf(a)) END;
eb_fpe(b); fb_abs(fpf(b));
COMMENT (edist DIV 2) means edist/2 truncated, not rounded;
IF sa=sb THEN BEGIN edist_eb-ea; ex eb-(edist DIV 2);

fx_fa+(fb-fa)/2.;
IF edist MOD 2 = I THEN

IF fx GEQ fpbspl THEN fx_fx-fpbsml
ELSE BEGIN fx_fx+fpbsml; ex_ex-1 END END

ELSE BEGIN edist_1+ea+eb-2*fpemin; ex_eb-(edist DIV 2);
fx_(fb-fa)/2.;
IF edist MOD 2 = 0 THEN fx_fx+fpbspl
ELSE IF fx GEQ 0. THEN fx_fx+fpfmin

ELSE BEGIN fx_fx+I.;
IF fx=1. THEN fx_fpfmin ELSE ex_ex-I END END;

b_sb*fpn(ex,fx);
RETURN (IF b=bin THEN ain ELSE b) END "fpnmed";

164 RICHARD I. SHRAGER

COMMENT Appendix C: Algorithm S;

REAL PROCEDURE root(REAL ain,bin,tol; REAL PROCEDURE f);
BEGIN "root" REAL a,b,c,fa,fb,fc,fx,q,r,u,v,x;
INTEGER i,j,la,mb,nb; LABEL bisect,funct,fail4;
COMMENT MACHINE: root also needs fpnmax from appendix A,

and combin,fpnmed from appendix B;
q_.5; v_8.; mb_-2; i_1; nb_12; j_O; COMMENT initial controls;
s_1; a_ain; fa_f(a); x_bin; fx_f(x); COMMENT initial brackets;
IF abs(fx) GEQ abs(fa) THEN BEGIN b_x; fb_fx END
ELSE BEGIN b_a; fb_fa; a_x; fa_fx END;
WHILE TRUE DO BEGIN COMMENT iterative loop;

la_IF sign(a)=sign(b) THEN abs(b-a)<tol
ELSE IF a<b THEN b<tol+a ELSE a<tol+b;

IF la THEN RETURN(a); COMMENT tolerance met;
IF j>nb THEN BEGIN s_5; nb_nb-I MAX 4; mb_mb+I MAX 4 END
ELSE BEGIN r_fa/fb; r_r/(r-1.) END;
CASE s-I OF BEGIN COMMENT select the sth of 5 strategies.

Do only the sth BEGIN directly below "Do" on this line;
BEGIN r_r END; COMMENT LI;
BEGIN r_r/(I.-u); COMMENT QI;

IF r>.5 THEN GOTO bisect END;
BEGIN r_u/(I.-u); COMMENT LE;

IF abs(a)>abs(b) THEN r_r*((I.-c/a)/(b/a-i.))
ELSE r_r*((a/b-c/b)/(I.-a/b));
IF r>.5 THEN BEGIN s_4; GOTO bisect END END;

BEGIN r_v*r; COMMENT ML;
IF r>.5 THEN GOTO bisect END;

bisect:BEGIN i_i+1; j_-I; r_.5; COMMENT MB;
IF q<1. THEN BEGIN

u_IF abs(a)<abs(b) THEN a/b ELSE b/a;
IF u<.5 THEN BEGIN

x_combin(fpnmed(a,b),combin(a,b,r),q);
q_q*q; GOTO funct END

ELSE q_1. END END END; COMMENT end strategies;
x_combin(a,b,r); COMMENT interpolate;
funct: IF x=a THEN RETURN(x); COMMENT crossover pair a,b;
fx_f(x); IF fx=O. THEN RETURN(x); COMMENT machine zero;
j_j+i; la_(abs(fx)<abs(fa)); COMMENT la is boolean;
IF sign(fx)=sign(fb) THEN BEGIN COMMENT success;

CASE s-I OF BEGIN COMMENT see previous CASE;
BEGIN IF la THEN BEGIN s_2; u_fx/fb END END;
BEGIN s_I END;
BEGIN IF la THEN BEGIN s_2; u_fx/fc END ELSE s_I END;
BEGIN s_1; v_8 END;
BEGIN IF i GEQ mb THEN s_4 END END;

IF la THEN BEGIN b_a; fb_fa; a_x; fa_fx END
ELSE BEGIN b_x; fb_fx END END COMMENT end success;

ELSE BEGIN COMMENT failure;
CASE s-1 OF BEGIN

BEGIN IF la THEN BEGIN s_2; u_fx/fa END ELSE s_4 END;
BEGIN IF la THEN BEGIN s_3; u_fx/fa; c_a; fc_fa END

ELSE s_4 END;
BEGIN GOTO fail4 END;

fail4: BEGIN s_5; v_v+v; i_0; j_0; mb_mb+i END;
BEGIN s_s END END;

IF abs(fx) LEQ abs(fb) THEN BEGIN a_x; fa_fx END
ELSE BEGIN a_b; fa_fb; b_x; fb_fx END END END END "root";

A RAPID ROBUST ROOTFINDER 165

Laboratory of Applied Studies
Division of Computer Research and Technology
National Institutes of Health
Bethesda, Maryland 20205

National Institutes of Health
Bethesda, Maryland 20205

1. R. P. BRENT, Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, N. J.,
1973.

2. J. C. P. Bus & T. J. DEKKER, "Two efficient algorithms with guaranteed convergence for finding a
zero of a function," ACM Trans. Math. Software, v. 1, no. 4, 1975, pp. 330-345.

3. T. J. DEKKER, " Finding a zero by means of successive linear interpolation," in Constructive Aspects of
the Fundamental Theorem of Algebra (B. Dejon and P. Henrici, eds.), Wiley-Interscience, London, 1969.

4. T. J. DEKKER, "Correctness proof and machine arithmetic," in Performance Evaluation of Numerical
Software (L. D. Fosdick, ed.), Elsevier, New York, 1979.

5. G. E. FORSYTHE, M. A. MALCOLM & C. B. MOLER, Computer Methods for Mathematical Computa-
tions, Prentice-Hall, Englewood Cliffs, N. J., 1977.

6. W. M. KAHAN, "Personal calculator has key to solve any equation f(x) = 0," Hewlett-Packard J.,
Dec., 1979, pp. 20-26.

7. A. M. OSTROWSKI, Solution of Equations and Systems of Equations, Academic Press, New York,
1960; or 2nd ed., 1966.

8. D. STEVENSON & IEEE TASK P754 (A WORKING GROUP), "A proposed standard for binary
floating-point arithmetic," Computer, v. 12, no. 3, 1981, pp. 51-62.

